

1

An Approach for Selecting Software

Development Methodologies

Abstract - In recent years, we have witnessed a growth and

diversity in software development methodologies. Underlying

principles make software development methodologies different and

define a range of software projects that can be dealt with. In the

present study, we provide some guidelines that assist organizations

to make decisions about the methodology to be used for developing

a given product. A framework of factors in relation with

methodology, project, and organization was provided and applied

to compare the following four methodologies: Rational Unified

Process, Extreme Programming, Cleanroom Software Engineering

and Open Source Development. The Balanced Scorecard model

with its four complementary perspectives was used to guide the

selection process. The application of such a model was presented

and illustrated in a case study for selecting a project methodology.

Keywords: Software Process Comparison, Software Process

Selection, Balanced Scorecard.

1 Introduction

The diversity of application domains of software and the

priorities of project managers resulted in different

approaches to developing software. These approaches or

methodologies require different types of resources and yield

different kinds of products. Project managers should reflect

on the methodology to be used and decide upon the right or

the most suitable one for their projects. Priorities of the

project and the organization will greatly influence project

managers’ choice [1],[2]. Viewing the large number of

methodologies available today, many software engineering

researchers have been interested in comparing

methodologies [3],[4],[5]. By studying and comparing

methodologies, we can understand the context in which a

methodology might be applied and yield better value. Such a

comparison can assist organizations and project managers in

choosing the right methodology for every project.

In our research we deal with methodologies from the user’s

point of view. The user is represented by the project

manager and team members, willing to get the most out of

the methodology to be used. Four well-known

methodologies, which represent the mainstream in software

development, were chosen to conduct this study. These are:

Rational Unified Process (RUP), Extreme Programming

(XP), Cleanroom Software Engineering and Open

Source Development (OSD). Our aim is to evaluate

different aspects of the four methodologies and to provide a

comparative analysis which can serve as a framework for

selecting software development methodologies. A new

approach for selection based on the Balanced Scorecard

model is introduced. This approach provides guidance in

selecting methodologies by balancing different types of

objectives belonging to both technical and business aspects.

Besides, it takes into consideration the future developments

and projects of the company and does not focus only on a

single project ensuring therefore continuity in achieving the

company’s objectives.

The structure of this article is as follows. The second section

presents briefly the four methodologies to be compared. In

section three, factors for comparison, composing a

framework, are identified and used to compare the four

methodologies. This comparison is followed by a summary

of the obtained results. The fourth section introduces the

new approach for selecting software development

methodologies using the results obtained in section three. A

set of recommendations on the use of the proposed approach

is provided thereafter. To illustrate how to use this approach,

a case study was conducted. This includes a description of a

chosen organization and a product to be developed, followed

by recommendations on the methodology to be used.

2 The Software Development Methodologies

2.1 Introduction

Four processes were investigated in this article. RUP was

chosen because it is used by thousands of companies

worldwide. XP is a revolutionary way of developing

software. It stands as a rival to RUP and tries to solve some

of RUP’s drawbacks as stated by its authors. Open Source is

an international trend and is totally different from “classical”

approaches to developing software and has many special

characteristics. Besides, an increasing number of companies

are supporting it. Cleanroom Software Engineering is an

approach which took its principles from the semiconductor

industry and promises the production of high-quality

2

software. These four software processes represent the

mainstream in software development processes.

2.2 Rational Unified Process

The Rational Unified Process is a software engineering

process. It provides a disciplined approach to assigning

tasks and responsibilities within a development

organization. Its goal is to ensure the production of high-

quality software that meets the needs of its end users within

a predictable schedule and budget [6]. The RUP guides

software practitioners in effectively applying modern

software best practices, such as developing iteratively,

taking an architecture-centric approach, mitigating risk at

every stage in the process, and continuously verifying the

quality of the software [7].

2.3 Extreme Programming

Extreme Programming (XP) is one of the best-known

"agile" methods. XP is based on four values and an initial

set of twelve practices which was proven useful in

improving software development. The fundamental XP

values are: communication, simplicity, feedback, and

courage. The four values lead to a set of 12 practices, which

essentially form the rules of XP [8]. The 12 practices are :

planning game, small releases, metaphor, simple Design,

testing, refactoring, pair programming, collective code

ownership, continuous integration, sustainable pace, on-site

customer, and coding standards.

2.4 Cleanroom Software Engineering

Cleanroom software engineering is a theory-based, team-

oriented process for development and certification of high-

reliability software systems under statistical quality control.

A principal objective of the Cleanroom process is the

development of software that exhibits zero failures in use

[9]. The Cleanroom software engineering process combines

formal methods of software specification, design, and

correctness verification with statistical usage testing for

quality certification [10].

2.5 Open Source Development (OSD)

The concept of Open Source software development has

recently gained popularity and acceptance within the

software engineering community. An open source

methodology is being shaped as a formal way of developing

software. A description of the development process is given

in [11]. The process starts with a team of developers

designing and coding the software. They debug the software

until the source code is acceptable. The source code is then

released to the general user community, who in turn adds

more functionality. The original team plays the role of

project coordinators and planners.

3 Comparing Methodologies

3.1 Introduction

The current comparison aims at providing a framework of

factors that guides organizations in selecting methodologies.

Primary factors were chosen in the present study in relation

to the project, methodology, and organization:

• Project factors: Software quality required, project

innovativeness, project domain, and project criticality; • Methodology factors: Tools support, return on

investment of software process improvement, software

process improvement and capability and tailorability

and adoption; • Organization factors: Team size, discipline and

available resources.

These factors represent the most important elements that

may affect the choice of the project manager. Each factor

was assessed independently from the other factors and

contrasted in the context of the four methodologies. The

selected factors and the comparison are presented in what

follows:

3.2 Project

3.2.1 Software Quality Required

RUP - Verifying quality continuously is one of the six best

practices adopted by RUP. Quality should be reviewed with

respect to requirements based on different dimensions:

reliability, functionality, performance and usability, and

different types of tests: unit testing, integration testing,

system testing and acceptance testing. RUP assists the user

in the planning and execution of all these test types by

providing suitable techniques and tools.

XP - XP is very strong on producing high-quality software.

It focuses on both aspects of quality: meeting customer

expectations and defect counts by combining its 12

practices. Quality is improved throughout all the

development process by resolving defects early and

providing constant feedback on the product.

Cleanroom - Cleanroom focuses on defect prevention rather

than defect correction. By using a compromise of formal

specification, statistical testing and verification we may

reach a zero defect software. [12] provides a list of projects

where Cleanroom was applied resulting in a very low testing

failure rate.

OSD - There is no system level testing. Quality is achieved

by continuous testing and frequent releases. The quality of

OS software is reported to have less bugs than products

developed in traditional ways. Requirements are subject to

change during the development process. Functionality of the

final product may be totally different from what was

specified.

3

3.2.2 Innovativeness

RUP - The first step in a new RUP project is conducting an

assessment of your project to test its feasibility. The

assessment results in an implementation plan which shows

all necessary resources and support for accomplishing the

project. Regarding legacy system, RUP does not explicitly

address how to deal with them. An extension to RUP was

provided by Ronin International, Inc [13]. The extension

proposed supports maintenance and after-development

activities.

XP - On-site customer principle allows XP teams to get a

clear idea on the system functionality. The customer

functions as part of the project team and provides required

details. The refactoring practice demonstrates XP’s strength

when dealing with existing systems. With skilled

developers, refactoring is an excellent tool to improve

legacy code.

Cleanroom - Dealing with legacy code and rewriting

existing system is discussed in [14]. Rewriting is limited to

systems developed using the Cleanroom approach. This

includes small modifications, partial rewrites and adding

new components.

OSD - Most OS software deal with system software

(operating systems, web browsers, compilers, etc.) where

developers have enough knowledge about requirements and

architecture [15]. With innovative products and a distributed

community it is extremely difficult to elicit requirements to

be understood by programmers. On the contrary, the

modification of software is one of its great advantages over

other approaches

3.2.3 Project Domain

RUP - RUP may be used in various domains of application

and for large and small projects. It is used in many

companies in different domains: Telecommunication,

transportation, aerospace and defense, manufacturing and

finances.

XP - Although it has been successful in many domains of

application, no clear limits have yet been identified to XP

applicability.

Cleanroom - Cleanroom is most suitable for critical

applications. Critical refers to applications where defects

can cause loss of life or critical financial loss. Space and

defense, telecommunications, and system application are the

main domains where Cleanroom proved successful.

Cleanroom is used in commercial companies but on a very

limited scale.

OSD - The nature of OSD makes it target large projects with

distributed communities. Most known OS projects are

focused on large software development tools and Internet

based products. OS can fit for specific domains but the main

difficulty lies in finding and motivating interested and

skillful developers.

3.2.4 Project Criticality

RUP - Primary goals of plan driven methods are

predictability, stability, and high assurance. RUP is no

exception. With its risk-based approach to software

development, thorough documented plans and specifications,

and an increasing process capability through standardization,

measurement and control, RUP suits better for developing

highly-assurance, safety-critical systems. With low

criticality products, RUP becomes time-consuming and

shows less efficiency due to the extensive documentation

that should be generated.

XP - XP is still untested on safety-critical products. The

main difficulties rise from the simple design and the lack of

documentation [16]. However, with low criticality systems,

XP seems to give better results than plan driven methods.

Cleanroom - Cleanroom software engineering was designed

to develop software that shows no failures in use.

Incremental development under statistical process control

with formal specification and verification of software

maintain control over projects. This results in reducing risk

and achieving productivity in software development and

reliability in software performance.

OSD - OS projects are undertaken by volunteers with no

project plan, no schedule, no system level design or detailed

design, and no list of deliverables [17]. Geographical

limitations between developers add more uncertainties to the

development process and make it less predictable with less

assurance.

3.3 Methodology

3.3.1 Tools Support

RUP - RUP provides a full software support that helps to

automate steps in many activities in the development

process. These tools are grouped into a suite that is called

IBM Solutions. This includes RUP Builder to compose and

publish your own configuration of the Rational Unified

Process, Rational XDE for visual modeling and Rational

ClearCase for configuration management.

XP - It does not provide or recommend any supporting tool.

It is up to the user to choose appropriate tools.

Cleanroom - A set of tools called toolSET is used to support

specification, development and certification activities. This

includes the following tools:

• Certification Assistant: Automatically generates test

cases from usage probability distribution and carries

out statistical analysis of test results. • toolSET_Certify: A CASE tool for Statistical Usage

Testing. • CleanTest: Generates statistical test cases based on

input profile.

4

OSD - Different free tools are used such as browsers

(Netscape), text editors (Emacs), compilers (GNU Make),

configuration management tools (CVS), etc.

3.3.2 Return on Investment of Software Process

Improvement (SPI)

RUP - Best practices of software development

recommended by RUP are proven practices that support

business and technical decisions. On the other hand, using

the integrated tools of RUP product (IBM Solutions) can

provide a high return on investment by automating tasks.

XP - XP does not usually perform return on investment

analysis to determine an optimal allocation of resources to
deliver specific value. XP teams "Do The Simplest Thing

That Works". They try to avoid costs of not yet needed

functionality. Through the focus on simplicity and rapid

delivery, XP reduces lead times which lead to lower

investment and reduced operating expenses.

Cleanroom - Cleanroom achieves better return on

investment by avoiding post-production defect correction

(finding and correcting defects, tracking problems and

distributing fixes). This reduces rework and results in a

sharp reduction in direct costs of defect correction over the

market lifetime of products.

OSD - Costs of training to switch to OSD yield a low return

on investment for the development of a single application. If

we extend the evaluation to the whole life of the application,

or more, after developing other applications, the cost of

training becomes marginal and we can get benefit from

other programmers doing part of the job for free.

3.3.3 Software Process Improvement and Capability

RUP - Organizations using RUP may reach level 2 and 3 of

SW-CMM by complementing some project management

aspects [18]. Little research has been done to assess RUP

with CMM levels 4 and 5. Most of the concerns of the SW-

CMM at these two levels are related to the organization.

Processes should be implemented to satisfy corresponding

key process areas.

XP - XP meets most key process areas (KPAs) of level 2

and 3 of the CMM. The missing KPAs (Software

Subcontract Management for level 2 and Training Program

and Integrated Software Management for level 3) should be

addressed using a proper management support. Beyond level

3, XP ignores or partially covers KPA of CMM. Any

organization aiming to reach level 4 or 5 of the CMM

should use its own resources to satisfy these KPAs. More

details are given in [19].

Cleanroom - The SEI has developed a Cleanroom

Reference Model (CRM) that provides a framework for

developing a project or organization level Cleanroom

process. Once tailored, Cleanroom implements a majority of

the CMM of software development. Furthermore,

Cleanroom addresses processes that do not have matching

KPAs in the CMM [20].

OSD - A formal process called Open Source Maturity Model

(OSMM) [21] is used to assess the maturity level of OS

software but not the process of development. Some work has

been made to relate OSD with the Capability Maturity

Model. Assessments have been done for organizations

having a defined process and willing to migrate to OSD. A

case study was presented in [22]. The study concluded that

the process capability decreased from level 3 to level two,

while it is possible to reach again level 3 when the

development team copes with the readjustments of process

management.

3.3.4 Tailorability and Adoption

RUP - The Rational Unified Process could be used in whole

or in part "out of the box," as stated in [6]. It must be

configured and tailored to the specific context and needs of

an organization before its full implementation. One of the

major drawbacks of RUP is that it gives no guidelines on its

implementation. External expertise may be required.

XP - To adopt XP, you should use it. Practices should be

adopted gradually. You should adopt one practice at a time,

always addressing the most pressing problem for your team.

Once finished, you would go on to the next problem. In

practice, we can rarely adopt all the practices but we can get

instead a partial adoption.

Cleanroom - According to [23], Cleanroom can be adopted

in three ways: partial, complete or advanced. The author

suggests a phased approach to implementation by

introducing first fundamental Cleanroom principles and key

technologies. As team experience and confidence grow,

increased precision and rigor can be achieved in a full

implementation of Cleanroom technology. Finally, an

advanced implementation can be introduced to optimize the

Cleanroom process.

OSD - Adopting OSD means opening the source code of

your software under a certain license. The main difficulty in

adopting Open Source lies in finding and motivating

contributors and ensuring its continuity.

3.4 Organisation

3.4.1 Team size

RUP - Two or more team members. There is no upper limit

for RUP teams. It scales better to large projects; the larger

the team, the more efficient the process is.

XP - XP is aimed for small and medium sized teams. An

ideal XP team should be limited between three and twenty

project members. Larger teams are possible but tend to fail

applying XP practices and principles.

Cleanroom - Small teams between six and ten members.

With larger projects, teams may be subdivided into smaller

ones.

5

OSD - Programmers freely contribute to OS projects. This

constitutes distributed teams of volunteers. The number of

members ranges from few to many thousands.

3.4.2 Discipline

RUP - RUP imposes discipline as a factor for the success of

any project. Each member does a well-defined task with a

limited knowledge of what others are actually doing until

the process becomes standardized. After standardizing

processes, change becomes difficult and time consuming.

XP - It is most applicable to turbulent, high change

environments [8]. It gives better results with people willing

to collaborate. It is an “antidote to bureaucracy” of plan

driven methods. People feel comfortable and empowered by

having many degrees of freedom.

Cleanroom - Cleanroom views software development as an

engineering discipline and not as an art or craft. This gives

little freedom to creative work. The development process is

achieved in a very disciplined way.

OSD - The system is built by a large number of volunteers.

Work is not assigned. Instead, people themselves choose the

task they are interested in.

3.4.3 Available Resources

RUP - RUP is a proprietary product. Adopting RUP requires

investing a lot of resources. This includes buying the

process description, tools support and costs for training

people to use these tools. Additional costs may be required

to tailor RUP to fit the organization's needs. The process of

tailoring RUP is a project itself and may require external

expertise.

XP - Training people and consulting are the only

requirements.

Cleanroom - Tools support should be acquired. Training is

required for learning specification and verification

techniques.

OSD - No costs are imposed. Some OS projects may be

funded by organizations to encourage people to participate.

Money may be spent to hire programmers for instance.

3.5 Summary

A summary of the previous comparison is presented here:

• Quality: Cleanroom suits better projects requiring a

very high level of quality. RUP and XP can also

ensure a high level of quality. OSD can provide a code

with a low rate of bugs but suffers from poor

requirement elicitation. • Innovativeness: RUP and XP are better at dealing

with legacy systems. OSD is good at modifying old

code but the absence of documentation limits this

advantage. Cleanroom can only deal with systems

using the same techniques of specification and

certification.

• Domain of application: RUP and XP have a wider

range of application than OSD which is used mainly

for Web products and operating systems. Cleanroom

targets a very small range of applications such as real-

time systems. • Criticality: RUP and Cleanroom fit better with critical

projects. XP and OSD fit better low criticality projects

and yield better results than plan driven

methodologies. • Communication and discipline: XP and OSD rely

more on human factors. Free communication and staff

motivation are important to the success of the project.

RUP and XP rely instead on discipline and good

planning. • Team size: RUP and OSD work well with larger

teams. XP and Cleanroom usually target smaller ones. • Available resources: RUP and Cleanroom with less

degree require large investment especially for training

and tool support. XP and OSD on the contrary do not

require much investment. • Tool Support: RUP, Cleanroom, and OS provide

necessary tools support to assist the development

activities. XP relies more on the member’s skills and

does not provide such a support. • Return on investment: OSD provides higher long-

term return on investment. RUP, XP, and Cleanroom

do provide more or less high return on investment. • Software process improvement: Cleanroom’s

straightforward application leads to a very high level

of maturity. RUP and XP can reach high levels of

maturity with special arrangements. OSD does not

focus on process maturity and does not promote higher

levels of maturity. • Tailorability and adoption: RUP shows more

flexibility in adoption. Cleanroom provides sufficient

guidance on its adoption but in practice it needs a lot

of effort to apply its techniques and practices. OSD

and XP do not require special organizational

arrangements to use them. Their adoption is a matter

of willingness and acceptance within the company.

4 Selecting Methodologies

4.1 Introduction

In this section we present a new approach for selecting

software development methodologies. The presented

approach is based on the Balanced Scorecard model (BSC).

This latter combines aspects of software development and

business. In the first section we introduce the Balanced

Scorecard model and show how to use it for evaluating and

comparing methodologies. The second section presents a

case study made at a software development company to

illustrate the use of this model to select the best

methodology for a given project.

6

4.2 The Balanced Scorecard Model

The Balanced Scorecard (BSC) (Figure 1) is a recent

approach to strategic management and performance

measurement. It was issued within the industrial community

and has gained considerable interest. The Balanced

Scorecard groups similar types of measures into sets

regarded as perspectives (Figure 1). The BSC model of

Kaplan and Norton [24] defines four complementary

perspectives which can evaluate the capability of a

company: financial, customer, internal business process, and

learning and growth. These four perspectives balance short

and long-term objectives. They focus on both financial

outcomes and long-term competitive capabilities. The four

perspectives are detailed here [25]:

• Customer Perspective - Many companies aim to be

number one in delivering value to customers.

Customers may show many concerns: time, quality,

performance and cost. • Internal Business Process - Managers need to focus

on those critical internal operations that enable them

to satisfy customer needs. • Financial Perspective - Typical financial goals have

to do with profitability, measured for example, by

operating income, return-on-capital-employed and

economic value-added. • Learning And Growth - Intense global competition

requires that companies make continual improvements

to their existing products and processes and have the

ability to introduce entirely new products with

expanded capabilities.

Figure 1 : The Balanced Scorecard

4.3 The Balanced Scorecard as a Driver for

Selection

Beyond its normal use as a tool for strategic management

and a balanced business growth, the Balanced Scorecard can

be used to compare software development methodologies.

With its multi-criteria performance indicators, we can

evaluate software methodologies against the four

perspectives defined by the BSC. For a single project, a

software company may be willing to prioritize one or more

perspectives more than the other ones. By classifying the

different factors affecting software development into the

four aspects of the BSC, we get useful guidance on the

elements to be considered to achieve the required

perspectives and satisfy the company needs. Figure 2

presents such a classification. It refers to the value that we

might get from using a methodology. Characteristics for the

project, organization, and methodology were distributed

over the four perspectives showing at the same time

common points between them. The different characteristics

are grouped as follows:

• Internal business process: includes adoption and

tailorability, team size, tools support, innovativeness

and domain of application. • Financial: includes costs for tools support and costs

for training for team members, return on investment

and available resources. • Learning and growth: is reflected in factors such as

software process improvement capabilities, quality

achieved, dynamism, and return on investment. • Customer perspective: factors to improve the image

of the company. Software quality and process maturity

are the main factors affecting it.

4.4 General Recommendations

Selecting a methodology requires gathering enough

information on the project, the organization maintaining the

project, and available methodologies and their scope of use.

We can then map our project with the suitable methodology.

Organization’s related information should be investigated

first: software process capability, project management

support, skills, knowledge and willingness of people,

discipline or culture, orientation of the team manager, etc.

The next step should address the project elements: quality

required, innovativeness, domain of application, criticality,

required resources, etc. At this point, with the help of the

provided framework, the team manager can make his choice

dependent on the objectives and preferences of the project.

He or she will adopt a methodology that contributes most to

the achievement of the perspectives which conform with the

fixed objectives and then adapt it if necessary to fit the

organization's needs.

How Do

Customers

See Us ?
Can We

Continue

To Improve

and Create

Value

How Do We Look

To Shareholders ?

What Must

We Excel

At ?

Customer Perspective

Goal Measures

Innovation and

Learning Perspective

Goal Measures

Financial Perspective

Goal Measures

Internal Business

Perspective

Goal Measures

7

5 Case Study

5.1 Introduction

With the guidelines and considerations outlined in section 3

and 4, we conducted a case study at a software development

company to demonstrate the applicability of the provided

framework. We will describe first the case organization: the

development team and its stakeholders and the existing

processes within the organization. We will then describe the

product to be developed: its functionality, quality required

and its criticality to both the company and the customer.

With reference to the different factors analyzed in section 3,

we recommend one of the four methodologies studied to be

adopted for this project. Arguments will be provided to

justify our choice.

5.2 The Organization

Macro Data World or « MDWorld » is a software

development company specialized in Decision Support

Systems (DSS). MDWorld was created in 2000 by a group

of software engineers in association with MCS Company

(Mediterranean Consult and Service Company), the leader of

consulting in Algeria. MDWorld was created to

complement and extend MCS Company activities. Its aim

was to furnish efficient solutions for its customers, such as

software development and the study and evaluation of

existing information systems. MDW has been developing

software since 2000 when the development team consisted

of 4 developers. Since then the development team has grown

up and now has 7 people, 5 of whom are directly involved in

software development. The development team is made up of

a group of experienced permanent staff that have been

Figure 2: Methodology Value

working together since 2000. This developed a good sense

of communication within the group and allowed them to

share knowledge in an efficient way. The five-year period of

teamwork allowed the company to establish some

development and managerial processes but there was no

formal description of activities to be done with no history of

previous projects. Development activities are held in a four-

room flat which is also used as a headquarter for the

administration of the company.

5.3 The Project

The mission of the project is to create a business intelligence

analysis tool based on Data-Warehousing techniques to help

companies to store company-related information and to

provide in-depth analyses of data gathered whenever necessary,

in order to support management decision making processes. The

product is to be called Maestro. It is to be developed as a COTS

product. It is customizable and needs to be configured before

being used by companies. The Dot Net framework was chosen to

develop the product. The development team used to Delphi

environment and decided now to move to Microsoft’s recent

technology. Team members have little experience with Dot Net

technology. Special training is required to adapt with the new

environment. The company planned a one-month training period

for all team members and allocated a special budget for this. The

product is supposed to perform the following functions:

• Consolidate and centralize all available data. • Provide a dashboard view of the business.

Methodology

Value

Return on Investment

Customer Internal Business

Process

Learning and

Growth

Financial

Process Maturity

Software Quality

Software Process

Improvement Capabilities

Tailorability

Available Resources

Tool Support

 Dynamism

Team Size

Innovativeness

Domain of

Application

8

• Use different models for data analysis, and • Ensure information broadcasting all over the

company.

The company has already assessed its software development

process and found it as being equivalent to level one of the

CMM. The group established a program to increase the

maturity level at least to level two. Last, and for special

obligations, the project must be finished within three

months. Respecting the fixed deadline is also highly

required.

5.4 Discussion

5.4.1 Project Factors

Regarding the application domain, we can eliminate

Cleanroom which is not a good choice to develop a business

application. The project is critical to the company due to the

rigid deadline imposed by the managerial staff. Criticality

favors plan-driven methodologies (RUP) rather than agile

ones (XP and OS). As for quality, the product does not

require a high level of quality. Quality has little impact on

our choice since the three remaining methodologies can

ensure the required level of quality. Concerning

innovativeness, MDW has already dealt with many similar

projects. The present product is considered as an

improvement to an old system. XP deals better with legacy

code and promotes better results.

5.4.2 Methodology Factors

The company cannot afford tool support required by RUP.

Some Open Source tools are used instead. XP and Open

Source do not require such resources. Return on investment

is critical to the well-being of the company. There is an

urgent need to recover money being invested since 2000. XP

offers a short-term benefit while RUP and Open Source

promise a long-term benefit. The company cannot wait

longer to see the benefits of its investment. MDW

management insists on achieving a higher level of the

CMM. RUP and XP offer more possibilities than Open

Source Development. Adoption prioritizes XP and with a

minor degree RUP. Good communication between team

members and the open environment inside the company give

XP more acceptance and make it easier to adopt. RUP is

rigid and resource-hungry while Open Source requires a lot

of time and has little acceptance within the company

considering it as a chaotic process.

5.4.3 Organization Factors

A seven members-team is an ideal size of an XP project and

fits well the development of the present product. Open

Source is also possible but we do not have any indicator as

to the team yield. A smaller version of RUP is also possible

after a customization process. Dynamism highly favors XP

and Open Source in the case of MDW. The small budget

allocated to the project favors XP and Open Source and

makes the project accomplishment uncertain using RUP.

5.5 Conclusion

Achieving a higher level of maturity is a strategic goal for

MDW. It will serve in the future as a marketing device to remain

competitive and win contracts. On the other hand, there is an

urgent need to recover its investments as soon as possible. These

are the two main objectives that the company wants to achieve.

The first objective ties with customer perspective represented by

process maturity and software quality factors while the second

one ties with financial perspective seen as maximizing return on

investment by minimizing expenses. Open Source does not

satisfy the first expectation and is not therefore recommended.

Regarding financial aspects, the need for a short payback period

for the investment and the small allocated budget for the project

make XP the best choice. As for process improvement

capabilities, both XP and RUP offer higher maturity levels

which comply with the fixed objectives. The rest of the factors

(adoption and tailorability, innovativeness, domain, quality,

criticality, and team size) have little influence on the choice

because they are dealt with nearly in the same way by both

methodologies XP and RUP. The precedent factors make XP the

best choice for the development of the studied project.

6. Conclusion and Suggestions

This Study deals with comparing and selecting software

development methodologies. The need for comparing software

development methodologies arises from the perplexity that faces

organizations and project managers when selecting a

methodology for their projects. We introduced a new approach

for selection based on the Balanced Scorecard, an industrial

model which proved its consistency over the time. In addition to

guidance provided by the proposed model in selecting

methodologies, its interest lies in that it takes into consideration

the future developments and projects of the company and does

not limit the company’s vision to a single project. Methodologies

for future projects will be chosen in the same way, ensuring

continuity in achieving the desired objectives. The environment

created by each project will complement what has already been

done. However, this model may be improved by using additional

perspectives in the BSC model to suit software development. In

fact, software development has special characteristics that make

it differ from industrial projects. An in-depth study is needed to

discover the other possible perspectives to be taken into account.

The framework used, composed of the different characteristics of

the project, organization, and methodology is not exhaustive but

shows only the most important factors of these three elements.

Further study will allow us to find more about this point. Using

the BSC model as a starting point will allow to identify other

relevant characteristics and therefore to enrich the framework

with more factors that may affect the choice. The same thing is

to be said on the studied methodologies. Introducing more

methodologies will bring more diversity and give more

credibility to the study. The Balanced Scorecard is one of many

industrial models that have been successfully adopted since

decades. Software development has common features with the

industrial community and has already borrowed many techniques

and tools from it. In order to achieve better performance and to

9

bypass the current crisis, the software community may

investigate for industrial models or standards to be used for

improving the way software is developed.

References

[1] – Robert C. Glass, “Process Diversity and Computing

Old Wives’/Husbands’ Tale,” IEEE Software, July 2000

[2] – Mikael Lindvall and Ioana Rus, “Process Diversity in

Software Development,” IEEE Software, July/August 2000

[3] - B. Henderson-Sellers, G. Collins, R. Dué and I.

Graham, “A Qualitative Comparison of two Processes for

Object-Oriented Software Development,” Information and

Software Technology, 43 (2001) 12

[4] - B. Henderson-Sellers and C. Gonzalez-Perez, “A

Comparison of four Process Metamodels and the Creation of

a New Generic Standard,” Information and Software

Technology, 47 - 2005

[5] – Frina Albertyn, “Comparing Possible E-Commerce

Processes,” Proceeding of the 16th Annual NACCQ,

Palmerston North, New Zelanda, July - 2003

[6] - Philippe Kruchten, The Rational Unified Process: An

Introduction. Addison Wesley, 2003

[7] - Per Kroll, Philippe Kruchten, Rational Unified Process

Made Easy: A Practitioner’s Guide to the RUP. Addison

Wesley, 2003

[8] - Kent Benck Extreme Programming Explained -

Embrace Change. Addison Wesley, 1999

[9] - Richard C. Linger and Carmen J. Trammell

,“Cleanroom Software Engineering Reference Model -

Version 1.0,“ Technical Report CMU/SEI-96-TR-022 ESC-

TR-96-022, November 1996

[10] - R. Linger, “Cleanroom Process Model,” IEEE

Software, March 1994

[11] – Jason Charvat, Project Management Methodologies:

Selecting, Implementing, and Supporting Methodologies and

Processes for Projects. John Wiley and Sons, 2003

[12] – R. C. Linger "Cleanroom Software Engineering for

Zero-Defect Software," Proceedings of the 15th

International Conference on Software Engineering,

Computer Society Press, May 1999

[13] – Scott W. Ambler, John Nalbone, Michael J.

VizdosThe , Enterprise Unified Process : Extending the

Rational Unified Process. Prentice Hall PTR, 2005

[14] – M. D. Deck, "Cleanroom Software Engineering and 'Old

Code' -- Overcoming Process Improvement Barriers,"

Proceeding of the Pacific Northwest Software Quality

Conference, October, 1995

[15] - Alfonso Fuggetta, “Open Source Software - An

Evaluation,” Journal of Systems and Software, Volume 66, Issue

1, April 2003

[16] - Barry Boehm and Richard Turner, Balancing Agility and

Discipline: A Guide for the Perplexed. Addison Wesley, 2003

[17] - Juhani Warstaa and Pekka Abrahamsson “Is Open Source

Software Development Essentially an Agile Method?” 3rd

Workshop on Open Source, International Conference on

Software Engineering, Portland, Oregon, May 3-11, 2003

[18] – Lisandra V. Manzony and Roberto T. Price “Identifying

Extensions Required by RUP to Comply with CMM Levels 2

and 3,” IEEE Transactions on Software Engineering, February

2003

[19] – Mark C. Paulk, “Extreme Programming from a CMM

Perspective,” IEEE Software, November/December 2001

[20] - Richard C. Linger, Mark C. Paulk and Carmen J.

Trammel, “Cleanroom Software Engineering Implementation of

the Capability Maturity Model for Software,” Software

Engineering Institute, December, 1996

[21] - "Open Source Maturity Model," Available at:

http://www.navicasoft.com/pages/osmm.htm

[22] – W. Bleek, M. Finck and B. Pape, “Towards an Open

Source Development Process –Evaluating the Migration to an

Open Source Project by Means of the Capability Maturity

Model,” Proceedings of the First International Conference on

Open Source Systems (OSS 2005), 11-15 July 2005, Genua,

Italy

[23] P. Hausler, R. Linger and C. Trammell, “Adopting

Cleanroom Software Engineering with a Phased Approach,”

IBM Systems Journal, 33[1] 1994

[24] – Robert S. Kaplan and David P. Norton, The Balanced

Scorecard: Translating Strategy into Action. Harvard Business

School Press, Boston, Massachusets – 1996

[25] – Robert S. Kaplan and David P. Norton, “The Balanced

Scorecard – Measures that Drive Performance," Harvard

Business Review, January-February 1992

